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Abstract—We study the detection performance of large scale
sensor networks, configured as trees with bounded height, in which
information is progressively compressed as it moves towards the
root of the tree. We show that, under a Bayesian formulation,
the error probability decays exponentially fast, and we provide
bounds for the error exponent. We then focus on the case where the
tree has certain symmetry properties. We derive the form of the
optimal exponent within a restricted class of easily implementable
strategies, as well as optimal strategies within that class. We also
find conditions under which (suitably defined) majority rules are
optimal. Finally, we provide evidence that in designing a network
it is preferable to keep the branching factor small for nodes other
than the neighbors of the leaves.

Index Terms—Decentralized detection, error exponent, sensor
networks, tree network.

I. INTRODUCTION

W E consider a sensor network, configured as a directed
tree, with a fusion center at its root. The objective of

the network is to make a decision between two given hypotheses
and . Observations are obtained at the nodes of the tree,

and information is propagated from the leaves towards the root.
However, because of resource constraints, e.g., a restriction to
single-bit messages, every node is required to compress or quan-
tize its information (its observation and the messages it has re-
ceived) before forming its own message. Based on the received
information, the root or fusion center makes a decision about
the true hypothesis. Our objective is to understand the scaling
of the error probability at the fusion center, as the number of
nodes increases, and its dependence on qualitative properties of
the tree.

In the well-studied parallel configuration (see e.g., [1]–[10]),
each node sends its compressed information directly to the fu-
sion center. A tree, on the other hand, allows for shorter-range
communications, thus making better use of communication re-
sources. Tree networks have been studied in several references,
such as [11]–[18]. It is known that under the assumptions to be
made in this paper (conditioned on either hypothesis, the ob-
servations at the different nodes are i.i.d.), optimal quantization
strategies take the form of likelihood-ratio quantizers, and one
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can obtain “person-by-person optimality” conditions that need
to be satisfied by the optimal quantizers. Nevertheless, finding
the optimal quantizers, and hence characterizing the detection
performance, is a rather intractable problem even for a moderate
number of nodes. For this reason, in the spirit of [19], we focus
on the exponential rate of decay of error probabilities.

In [20], we studied the Neyman–Pearson variant of the
problem considered in this paper. We showed that the error
probability decays exponentially fast with the number of nodes
(this is apparently not the case when the height is unbounded,
e.g., in a tandem configuration [21]–[24]); furthermore, in some
cases the error exponent associated with a tree configuration
turned out to be the same as for the parallel configuration. In
this paper, we continue this investigation by focusing on the
Bayesian formulation. Similar to the Neyman–Pearson case,
we will see that for bounded height trees error probabilities
decay exponentially fast. However, the optimal error exponent
is generically worse than the one associated with a parallel
configuration (cf. Proposition 2), and is also harder to charac-
terize exactly. In order to make further progress, we place some
additional restrictions on the trees to be considered, as well as
on the allowed quantization strategies. The following example
serves to motivate some of our assumptions.

Example 1: (Random Nodes in the Unit Square) Suppose that
we distribute nodes randomly in the unit square and place a
fusion center at the center of the square. We are interested in
configuring the nodes so that every node is at most two hops
away from the fusion center.

One possibility (to be referred to as Design I) is to fix some
, and divide the square into sub-squares, each with side

of length (see Fig. 1). For large , there are approxi-
mately nodes in each of these sub-squares. We let all nodes
within a sub-square transmit their messages to an “aggregator”
node in that sub-square. In this way, we get a “symmetric” tree
network, in which every aggregator is connected to roughly the
same number of nodes, with high probability. Suppose now that
the communication cost is proportional to the Euclidean dis-
tance between two communicating nodes. Since the number
is fixed, the communication cost in this strategy is .

An alternative possibility (to be referred to as Design II) is to
reduce the overall communication cost by using a 2-hop span-
ning tree. As before, we place an aggregator in each of the
sub-squares, and let the rest of the nodes in the sub-square send
their messages to this aggregator. However, we allow to be
chosen optimally. The overall expected communication cost is

which we minimize by setting , and thus
reducing the cost of Design I to . On the other
hand, one suspects that the detection performance of Design II
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Fig. 1. Random nodes in a unit square. The hollow circles represent the local
aggregators. The dotted lines represent communication links. Only one sub-
square is shown with its communication links.

will be inferior to that of Design I. The results in Lemma 3 and
Proposition 3 provide evidence that this is indeed the case.

Motivated by the two designs introduced in Example 1, we
will consider the detection performance of two different classes
of tree networks. The first one consists of symmetric trees with
a fixed number of aggregators or intermediate nodes, while the
second consists of trees in which the number of intermediate
nodes increases at a certain rate (we call these the rapidly
branching tree sequences; cf. Section V). We characterize
and compare the detection performance of these two classes,
optimized over a restricted set of strategies that are easy to
implement. In particular, we show in Proposition 3 that the
second class performs worse than any of the tree networks in
the first class.

The rest of this paper is organized as follows. In Section II,
we introduce the problem formulation and some related con-
cepts. In Section III, we show that for general tree networks, the
error probability decays exponentially fast with the number of
nodes in the network, and provide bounds for the rate of decay.
In Sections IV and V, we consider specific classes of tree net-
works, characterize their performance, and provide simple (but
suboptimal) strategies. Finally in Section VI, we summarize and
conclude.

II. PROBLEM FORMULATION

In this section, we introduce the Bayesian version of the
model in [20], describe the basic assumptions and notation, and
recall a useful result from [20]. We are given two hypotheses

and , each with prior probability , corresponding
probability measures , and associated expectation operators

. We model the sensor network as a directed rooted
tree , in which a node sends messages to another if there is
a directed arc from the first to the second node. The root of
the tree is the fusion center, and will be denoted by . The
nodes that send messages directly to are called its immediate

predecessors, while is called an immediate successor of each
of these nodes. Let the set of immediate predecessors of a node

be .
A sequence of trees represents the evolution of the

network. We focus on tree sequences with bounded height, de-
fined as the length of a longest directed path. For a tree with
height , a node is said to be at level if it is connected to the
fusion center via a path with hops. Hence, the fusion center

is a level node.
We assume that under each hypothesis , where ,

every node makes an i.i.d. observation , with marginal dis-
tribution . If is a leaf node, it sends a summary

of its observation to its immediate successor, where
is constrained to belong to a given set of allowed quantization
functions. (For example, can be the set of all binary functions
of .) If is a non-leaf node, it summarizes its own observation
and the messages it has received using a transmission function

, to produce a message . This message is then sent to its
immediate successor. Finally, the fusion center uses a fusion
rule to decide between the two hypotheses. Let be a random
variable that represents the decision of the fusion center. A col-
lection of quantization and transmission functions, one for each
node, and a fusion rule will be called a strategy. A tree in which
every non-leaf node ignores its own observation, and simply for-
wards a summary of its received messages, will be called a relay
tree; in that case, non-leaf nodes will also be referred to as relay
nodes. Let be the number of leaves in the sub-tree rooted
at node . In particular, is the total number of leaves of
the tree .

Given a tree network , our objective is to minimize the
probability of error ,
over all strategies. Let be the minimum probability of
error (over all strategies) at the fusion center. From an asymp-
totic perspective, we are given a sequence of trees , and
seek to characterize the optimal error exponent

For a relay tree, we consider instead the optimal error expo-
nent

where we have normalized the log-error probability by ,
so that is the error exponent per observation.

Recall that is the distribution of an observation made by
a node under hypothesis . For any , let be the
distribution of , when has distribution . We make the
following assumptions, which are standard in the literature (see,
e.g., [5], [8], and [19]). The Kullback–Leibler (KL) divergence
between two probability measures and is denoted by

where the expectation is taken with respect to (w.r.t.) the mea-
sure .

Assumption 1: The measures and are equivalent,
i.e., they are absolutely continuous w.r.t. each other. Further-
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more, there exists some such that
.

To develop insights into how the error probabilities scale with
the number of nodes, we will use an upper bound for the error
probabilities at each node in the network. The next proposition
allows us to recursively propagate error probabilities along a
tree in which all leaves have paths with hops to the fusion
center. Such a tree is called a -uniform tree.

Let , for , and . For
, and , we define recursively [20]

(1)

(2)

We make the following assumption. A prime denotes dif-
ferentiation w.r.t. , and a double prime indicates the second
derivative w.r.t. .

Assumption 2: Both and are finite,
and there exists some , such that for all , we
have for all , and for
all .

The following result is proved as Proposition 1 in [20]. Let
be the log-likelihood ratio (or more formally, the loga-

rithm of the associated Radon–Nikodym derivative) of the re-
ceived messages at node . A (one-bit) Log Likelihood Ratio
Quantizer (LLRQ) with threshold for a non-leaf node is a
quantizer that takes the form

Proposition 1: Consider a sequence of -uniform relay trees.
Suppose that Assumptions 1–2 hold. Suppose that the following
strategy is used: every leaf employs the same quantization func-
tion , and every level node uses a LLRQ with
threshold , satisfying

(3)

(4)

(5)

Then

Proposition 1 shows that the Type I and II error expo-
nents of -uniform trees using the strategy described in the
proposition are essentially upper bounded by
and respectively. In Section V, we present a

class of tree networks whose error exponents are precisely
, for .

III. EXPONENTIAL DECAY

In this section, we state a result that shows that the optimal
error probability in a sequence of trees with bounded height
decays exponentially fast with the number of nodes . (This is
in contrast to general trees, where the decay can be sub-expo-
nential [24].) The proof of Theorem 1 below is similar to that
for the Neyman–Pearson case [20], and can be found in [25].

When , we have the classical parallel configuration
considered in [19], and the optimal error exponent is given by

(6)

Theorem 1: Suppose that Assumptions 1 and 2 hold.
Consider any sequence of trees of height . Let

be the asymptotic proportion of nodes
that are leaves. Then

(7)

and

(8)

Furthermore, if , we have

(9)

The exact error exponent depends on several factors, such as
the probability distributions and the architecture of the network.
For example, in architectures that are essentially the same as the
parallel configuration or can be reduced to the parallel configu-
ration, the error exponent is . However, in most other cases,
the error exponent is in general strictly inferior to (cf. Propo-
sition 2). To obtain some insights into the optimal error expo-
nent, we consider specific classes of -uniform tree networks
in the next two sections. It turns out that finding optimal strate-
gies is in general difficult, so we will instead analyze simple, but
suboptimal strategies.

IV. SYMMETRIC TREE SEQUENCES

In this section, we consider the asymptotic performance of a
special class of -uniform tree networks, which we call -sym-
metric. These are relay trees, with a bounded number of relay
nodes, as in Design I in Example 1. We first characterize the op-
timal error exponent under a restrictive class of strategies. Then,
we study the effect of the number of relay nodes on the optimal
error exponent, and provide conditions under which the majority
decision rule is optimal. Throughout this section, we assume
that nodes can only send binary messages, taking values .
An -symmetric tree network is defined as follows.

Definition 1 ( -Symmetric Tree): For , a -uniform
tree sequence is said to be -symmetric if:

i) for all level nodes , where ; and
ii) for all level 1 nodes as

.
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The second condition in this definition requires that when
is large, all the level 1 nodes have approximately the same
number of immediate predecessors.

We define a counting quantizer (CQ) with threshold for a
level node , where , as a transmission function of the
form

where is the total number of 1s that receives
from its immediate predecessors. A counting quantizer has
arguably the simplest possible structure. Furthermore, it is
equivalent to a LLRQ with an appropriate threshold if all
the messages of ’s immediate predecessors are identically
distributed. For tractability and to ensure that our strategies are
easily implementable, we will now restrict all non-leaf nodes to
using counting quantizers. We call such a strategy a counting
strategy. Let denote the optimal (over all counting strate-
gies) error exponent (in the worst-case over all -symmetric
tree sequences). We will show that with the restriction to a
counting strategy, using the same transmission function at the
leaves results in no loss of optimality.

For any given strategy, and for each node , let the Type I and
II error exponents be1

Consider minimizing the following objective function:

(10)

where and are fixed positive constants. In the case of
minimizing the error exponent, [26]. We use
this more general formulation because it proves to be useful
later. We start with two preliminary lemmas, the first of which
is proved in [19] for the case ; the proof for the general
case is entirely similar.

Lemma 1: Suppose that Assumptions 1–2 hold. Consider
minimizing the objective function (10) at the fusion center of
a parallel configuration. Then, there is no loss in optimality if
we restrict all nodes to use the same transmission function, and
the fusion rule to use a counting quantizer.

Consider a symmetric tree, and let the set of immediate prede-
cessors of the fusion center be . From
Definition 1, the subtrees rooted at the different predecessors of

are asymptotically the same. We also note that under an op-
timal strategy there is a tradeoff between the Type I and II error
probabilities. It follows that without loss of generality, we can
assume that

(11)

(12)

Furthermore, if , then , and vice
versa, for all .

1We use the notation ��� here, without first showing that the limit exists.
The subsequent arguments can be made completely rigorous by considering a
subsequence of the tree sequence, in which limits of the Type I and II error
exponents exist at each non-leaf node.

Lemma 2: To minimize the objective function (10) at the fu-
sion center using a counting quantizer as the fusion rule, there
is no loss of optimality if we restrict all immediate predecessors
of to satisfy , and for all .

Proof: Suppose the fusion center uses a counting quantizer
with threshold . Then, we have

(13)

where the second equality follows because
is the dominating error event, and the third

equality follows from independence. Similarly, we obtain

(14)

Then, the objective function (10) is equal to

where equality holds if we set and
for all . Hence, it is optimal to use the same strategy

for each of the sub-trees rooted at the nodes .
Theorem 2: Consider an -symmetric tree sequence

, and suppose that Assumptions 1–2 hold. Within
the set of counting strategies, there is no loss in optimality if
we impose the following restrictions:

i) all leaves use the same transmission function;
ii) for each , all level nodes use counting quantizers

with the same threshold.
Furthermore, the optimal error exponent at the fusion center

is given by2

(15)

2The products are taken to be 1 when � � �. We also use the notation ��� �

������ ��.
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Proof (Outline3): From Lemma 2, we can restrict attention to
counting strategies that use the same strategy at every sub-tree
rooted at each . Suppose that the fusion center uses,
as its fusion rule, a counting quantizer with threshold . Then,
the objective at each is to minimize

We apply Lemma 2 on , and repeat the same argument for
steps. Therefore, we conclude that for each , there is no
loss in optimality if all nodes at the same level , use counting
quantizers with the same threshold . Moreover, by the same
argument, there is no loss in optimality if each level 1 node has
the same Type I and II error exponents. Lemma 1, applied to
each level 1 node, implies that it is asymptotically optimal for
all leaves to use the same transmission function , and all level
1 nodes to use LLRQs with the same threshold . (Note that
these LLRQs must be equivalent to counting quantizers, since
the leaves use the same transmission function.) Finally, the form
of the optimal error exponent is obtained by optimizing over
the thresholds (for ), the threshold , and the
transmission function . The theorem is now proved.

Suppose that the transmission function in (15) has been
fixed, and suppose that and . Then, we have

and equality cannot hold simultaneously in both expressions
above. Since for each and are con-
tinuous in , the error exponent in (15) is achieved by setting

(16)

Hence, the error exponent is strictly smaller than that for the
parallel configuration. This shows that using a -symmetric tree
results in a loss of efficiency as compared to the parallel config-
uration, if we restrict to counting strategies. In fact, a stronger
result is possible. The detection performance of a 2-symmetric
tree is strictly worse than that of a parallel configuration, even
without the restriction to counting strategies.

Proposition 2: A 2-symmetric tree has strictly worse detec-
tion performance than a parallel configuration. Moreover, there
is no loss in optimality restricting to counting strategies.

Proof: Consider a 2-symmetric tree with nodes and
sending messages directly to the fusion center. It is not hard
to see that the only choices for the fusion rule are i) declare

iff both and send 0; ii) declare iff either or
send a 0; iii) declare iff sends a 0; and iv) declare
iff sends a 0. The latter two rules can achieve an error

exponent at most half that of the parallel configuration since

3For any given counting strategy, a more rigorous proof will involve taking a
subsequence of �� � along which the vector of thresholds that defines the
counting strategy converges to a limit; see the Proof of Theorem 3, for a similar
argument.

half of the leaves are ignored. Rules 1 and 2 are counting rules. It
follows by the same argument as in the Proof of Theorem 2, that
there is no loss in optimality restricting the 2-symmetric tree to
counting strategies. The lemma then follows immediately from
our discussion after (16).

A. On the Worst Case Error Exponent

When , the network is essentially the same, and there-
fore achieves the same performance, as a parallel configuration,
which is the best possible. Our next result provides evidence
that performance degrades as increases. In other words, for a
fixed number of nodes, it is preferable to have a high branching
factor at level 1, and a low branching factor, say , at the
other levels. Let be a -symmetric tree sequence,
for .

Lemma 3: Suppose that Assumptions 1–2 hold, and that the
network is restricted to counting strategies. Then, for any

, and any positive integer , .
Proof: Consider any sequence of integers , where

, such that for all . For each , we can
find an integer , such that .
Since is an integer, we obtain

(17)

(18)

Then, we have

[The first strict inequality is because equality cannot hold si-
multaneously in both (17) and (18).] Taking the supremum over

and , yields . The proof is now complete.

The above lemma shows that for any and ,
is an increasing sequence, which is bounded

above by zero, hence it converges. We provide an upper bound
for this limit (cf. Proposition 6) below.

Proposition 3: Suppose that Assumptions 1–2 hold. For any
collection of symmetric tree sequences,

, where is a -symmetric tree sequence, we
have

Proof: Given , and that satisfies
, let

(19)
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and . We have

Since as , we obtain

and taking the infimum over and , the proposition
is proved.

Under some additional symmetry assumptions, the inequality
in the above proposition becomes an equality. This is shown in
Proposition 6 in Section V.

B. Optimality of the Majority Decision Rule

Suppose that all leaves use the transmission function .
Finding an optimal counting strategy by solving the optimiza-
tion problem (15) requires us to search over a space with
elements, and also optimizing over . The search can be daunting
even for moderate values of and . For this reason, we now
consider the case where is odd, and the majority decision rule
is used at every non-leaf node, i.e., a node transmits a 1 iff the
majority of its immediate predecessors send a 1. For level 1
nodes, the majority decision rule corresponds to a LLRQ with
threshold 0, while for nodes of level greater than 1, it corre-
sponds to a counting quantizer with threshold . In
the proposition below, we develop a sufficient condition under
which this strategy is optimal.

Proposition 4: Consider a -symmetric tree network
with , where is an odd integer. Suppose that
all leaves use the same transmission function . Let
and be such that and

. Under Assumptions 1–2, and
the restriction to counting strategies, if

(20)

the optimal error exponent is

and is achieved by using the majority decision rule at all relay
nodes.

Proof: If , the network is equivalent to the parallel
configuration, and there are no relay nodes to consider. In this
case, and the condition (20) holds with equality.
Also, the formula for is the well known error exponent for
the parallel configuration. Henceforth, we assume that .

Fig. 2. Typical plot of the rate functions.

For simplicity, let and .
The sufficient condition (20) is obtained by approximating the
convex functions and with appropriate straight line segments
as shown in Fig. 2, and as we proceed to show.

Suppose that

(The argument in the case when the above inequalities hold in
the reverse direction will be similar.) We consider the solution
to the equations

which gives the intersection of the straight line approximations
shown in Fig. 2. Solving the linear equations, and observing that

, we obtain

where . Since and are
convex functions

(21)

We first show that , for all pairs such that
. This is equivalent to checking that

(22)

for all such that . Using the condition
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[which is a consequence of (20)], it can be shown (after some
algebra) that

where and
. The right-hand side of (22) increases when decreases

(and increases), hence the minimum value is achieved by
, and . This shows that (22) holds for all such that

, and therefore . From (21), we then have

A similar argument shows that

Therefore, from Theorem 2, we obtain

Finally, the proposition is proved by noting that the above in-
equality becomes an equality when we set each of the counting
quantizer thresholds to .

To show that our sufficient condition in Proposition 4 is not
vacuous, we provide an example in which the use of the majority
decision rule does not give an optimal counting strategy.

Example 2: Consider a -symmetric network, with
and . Suppose that each leaf sends the message 1 with
probability 0.3 under hypothesis , and with probability 0.9
under hypothesis . If all non-leaf nodes use the majority deci-
sion rule (the counting quantizer thresholds are ),
we get an error exponent of . If counting quan-
tizers with thresholds are used, our error exponent
is , which dominates (is more negative than) the
one for the majority decision rule. In fact, it can be checked nu-
merically that is the optimal choice of counting
quantizers.

The sufficient condition in (20) can be difficult to check if
one does not have access to the functions .
A simpler but cruder sufficient condition is presented below;
the proof is the same as in Proposition 4, except that we let

play the role of , and the role of .
Corollary 1: Suppose that is an odd integer greater than 1,

and that all leaves use the same transmission function . Under
Assumptions 1–2, and the restriction to counting strategies, if

then using the majority decision rule at all non-leaf nodes
achieves the optimal error exponent.

V. RAPIDLY BRANCHING TREE SEQUENCES

In the previous section, we considered a symmetric tree se-
quence in which the number of non-leaf nodes is bounded. In
this section, we consider tree sequences in which the number of

non-leaf nodes becomes large, in a certain sense, as increases.
We will characterize the optimal error exponent of such tree se-
quences under a restricted class of strategies, and show that the
performance of these tree sequences is inferior to that of the
-symmetric tree sequences.

Motivated by Design II in Example 1, we define the fol-
lowing.

Definition 2: A rapidly branching tree sequence is a sequence
of -uniform trees , such that:

i) the number of immediate predecessors of each non-leaf
node grows to infinity as increases;

ii) there exists a sequence of positive reals such that
decreases to 0 as increases and such that for each

level node , with , we have

A rapidly branching tree sequence is a sequence of trees in
which the number of immediate predecessors of each node
grows faster than the rate at which the tree becomes “unbal-
anced.” The definition of a rapidly branching tree sequence
implies that the number of immediate predecessors of every
level 1 node grows uniformly fast, in a certain sense.

In Design II of Example 1, when is large, with high prob-
ability, we have for all level 1 nodes and

. Therefore, this tree network fits our definition of a rapidly
branching network with height . For a general , a similar
design can be used to approximate a -hop MST [27]. In all of
these designs, with high probability we get a rapidly branching
tree network.

Since using LLRQs for every node is known to be optimal
(see, e.g., [5]), we assume that every node (including leaves)
is allowed to use LLRQs. The number of nodes at each level

in a rapidly branching tree network grows with . Similar to
Section IV, the problem of finding optimal LLRQs for each node
in a rapidly branching tree network is, in general, intractable.
Therefore, we make the following simplifying assumption.

Assumption 3: Every node is allowed to use LLRQs, and
every node at the same level uses a LLRQ with the same
threshold .

For notational simplicity, if each leaf uses a transmission
function which is a LLRQ, we identify with the threshold of
the LLRQ, i.e., . We will first state a limit theorem
for a rapidly branching tree network. This result essentially
shows that the bounds in Proposition 1 are tight, and is similar
in spirit to tightness results for Chernoff bounds. As the proof
is rather long and tedious, we refer the reader to [25].

Proposition 5: Suppose that Assumptions 1–2 hold. Given
a rapidly branching tree sequence , suppose each leaf
sends its observation to its immediate successor using a trans-
mission function , and each level node, where

, uses a LLRQ with a common threshold . Suppose that
satisfy (3)–(5). Then
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We now consider the Bayesian detection problem in a rapidly
branching tree sequence, in which all nodes are constrained to
sending binary messages.

Theorem 3: Consider a rapidly branching tree sequence
. Suppose that Assumptions 1–3 hold. Then, the op-

timal error exponent is

(23)

Furthermore, if the supremum is achieved by , and
, then the optimal threshold for the

fusion center is , and the optimal threshold for level
nodes, where , is

We first state two lemmas that we will not prove. The proof
of these two lemmas are easily obtained using simple algebra.

Lemma 4: Given and , we have

and the minimizer is given by

Lemma 5: For , and satisfying (4)–(5), we have

and

Proof of Theorem 3: Suppose that under Assumptions 1–3,
an optimal strategy is for each leaf to use a LLRQ with threshold

, and for each level node, where , to use a LLRQ with
threshold . Let be a subsequence such that

Since is bounded ( cannot diverge to infinity, oth-
erwise every leaf reports either 1 or 0 with probability one
asymptotically, under either hypothesis), there exists a sub-
sequence of such that as

. Then, from Assumption 2, since and
are bounded, the thresholds must satisfy

, for sufficiently
large; otherwise, it can be shown that either the Type I or Type
II error exponent at the fusion center is zero.

Therefore, there exists a further subsequence of
such that for all , for some

bounded . Then, for all , from Proposition 5, we obtain

Taking , and noting that and are continuous in
all their arguments, we get

This shows that there is no loss in optimality if we restrict the
transmission functions to be the same for all . Therefore, it
remains to optimize over and over . In this case, it is
well known (using the same argument as in Corollary 3.4.6 of
[26]) that the optimal fusion rule at the fusion center consists of
a LLRQ with threshold . To simplify the notation in the
following, we write as . Then, we have

(24)

(25)

where (24) and (25) follow from Lemma 4. We take
and in Lemma 5 to obtain



4050 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 10, OCTOBER 2009

The optimal error exponent and the optimal thresholds for the
LLRQs then follow by repeating the above same argument for
another steps. The proof is now complete.

By taking in (23), we obtain a lower bound that
matches the upper bound in (9). Hence, one does no worse than
by a factor of from the optimal error exponent of a par-
allel configuration.

For completeness, our next result shows that the bound in
Proposition 3 is an equality if leaves can use LLRQs as trans-
mission functions. In some sense, it is also a consistency result:
trees with a fixed branching factor , in the limit of large , per-
form the same as rapidly branching trees.

Proposition 6: Suppose that the set of allowable transmis-
sion functions for the leaves includes LLRQs. Then, under As-
sumptions 1 and 2, we have

Proof: Consider a collection of tree sequences
such that a) each

is a -symmetric tree sequence; and b) for each and for
each , every level 1 node in has the same number of
leaves attached to it. Then, from Theorem 2, the optimal error
exponent for each tree sequence is .

Suppose that there exists a subsequence such that
. Suppose that each tree sequence

uses the asymptotically optimal counting
strategy proposed in Theorem 2. Note that this strategy also
satisfies Assumption 3. We shall construct a rapidly branching
tree sequence from . Fix a positive

, and let be an increasing sequence of
positive integers such that

Let . Then, it is an easy exercise to verify that
satisfies Definition 2 with (which goes

to 0, as ). We then have

Taking , we obtain

a contradiction to Theorem 3. Therefore, we must have
. Finally, from Proposition 3, we

obtain the desired conclusion.

VI. CONCLUSION

In this paper, we studied the detection performance of large
scale tree networks with bounded height, under a Bayesian for-
mulation. We showed that the error probability decays exponen-
tially fast with the number of nodes in the network, and pro-
vided bounds for the rate of decay. We also considered specific
classes of tree networks to quantify the detection performance.

In particular, we considered simple counting strategies in sym-
metric tree networks, and characterized the optimal detection
performance over this class of strategies. We showed that the
detection performance of symmetric tree networks (with a fixed
number of relay nodes) is superior to that of rapidly branching
tree networks, although the latter is, in general, more energy ef-
ficient. We also showed that for these classes of tree networks
and transmission strategies, the Bayesian detection performance
deteriorates with the height of the tree architecture, in contrast
to the results for the Neyman–Pearson formulation [20].

Throughout this paper, we have assumed that every node
makes a (conditionally) i.i.d. observation. A topic for further
research is the case of correlated observations, which remains
a relatively unexplored area, with work mainly limited to the
parallel configuration [10], [28]–[32].
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